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Abstract
Based on two different iteration procedures the groundstate wavefunctions and
energies for N-dimensional generalized Sombrero-shaped potentials are solved.
Two kinds of trial functions for the iteration procedure are defined. The iterative
solutions converge nicely on consistent results for different choices of iteration
procedures and trial functions.

PACS numbers: 11.10.Ef, 03.65.Ge

1. Introduction

It is well known that the problem of a non-relativistic particle moving in an N-dimensional
Sombrero-shaped potential provides a prototype sample of the spontaneous symmetry breaking
mechanism. This problem is solved properly based on an iterative method developed by
Friedberg et al [1]. However, the usual Sombrero-shaped potential provides no information
about the symmetry restoration. Recently, the generalized radially symmetric Sombrero-
shaped potential in the N-dimensional space has been proposed by Jackiw [2]:

V (r) = 1
2g2

(
r2 − r2

0

)2(
r2 + Ar2

0

)
, (1)

where r0 is related to the dimension N by r4
0 = (2 + N)/3, g2 and A are arbitrary constants.

This potential involves the sixth power of the variable and has a more complicated structure,
and also gives richer behavior of the shape of wavefunctions. This will be shown in this paper
in more detail.

A special simple form of this kind of potentials with zero eigenvalue for its groundstate
has been applied by G ’t Hooft et al [3] for the discussion about the possibility of the existence
of a new kind of transformation from real to imaginary spacetime variables. The invariance
of this transformation needs to have a zero eigenvalue for the groundstate. A more general
discussion about the potential giving a zero eigenvalue groundstate is given in [4].

1751-8113/08/235302+12$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/41/23/235302
http://stacks.iop.org/ JPhysA/41/235302


J. Phys. A: Math. Theor. 41 (2008) 235302 W-Q Zhao

Jackiw also challenged the author of [1] to apply the iterative method for solving the
Schrödinger equation with a generalized Sombrero-shaped potential. Specially for a simple
case when the analytical solution of the groundstate exists, choosing a trial function with
maxima at a finite r the iteration should reach the exact solution with only one maximum at
r = 0. His question is properly answered by the three authors for the one-dimensional case
[5]. The same problem will be solved for the N-dimensional generalized Sombrero-shaped
potential in this paper. The corresponding Schrödinger equation for the groundstate radial
wavefunction is(

− 1

2r2k

d

dr
r2k d

dr
+ V (r)

)
ψ(r) = Eψ(r) (2)

with k = (N − 1)/2. The boundary conditions are

ψ(∞) = 0 ψ ′(0) = 0. (3)

When g = 1 and A = 2 the solution of the groundstate has an analytical form as ψ(r) = e−r4/4

with the eigenvalue E0 = r6
0 . However, for arbitrary g and A the groundstate wavefunction

has no analytical form. In the following two iterative solutions for the groundstate of (2)
are presented. To apply the iterative methods we introduce the trial function φ(r) satisfying
another Schrödinger equation(

− 1

2r2k

d

dr
r2k d

dr
+ V (r) − h(r)

)
φ(r) = gE0φ(r) = (E − �)φ(r), (4)

where h(r) and � are the corrections of the potential and groundstate energy. Starting from
this trial function φ(r) we perform two iterative procedures. Define the exact wavefunction
as

ψ(r) = f (r)φ(r) = e−τ(r)φ(r). (5)

The iteration performed for f (r) and � is named f -iteration [1] and that performed for τ(r)

and � is named τ -iteration [6] in this paper. For the f -iteration two iterative series of {fn(r)}
and

{
�

f
n

}
, n = 0, 1, . . . , are introduced with f0(r) = 1 and �

f

0 = 0. For the τ -iteration two
iterative series of {τn(r)} and

{
�τ

n

}
, n = 0, 1, . . . , are defined with τ0(r) = 0 and �τ

0 = 0.
The iterations for these two sets can be performed according to the following equations. For
the f -iteration we have [1]

�f
n =

∫ ∞
0 r2kφ2(r)h(r)fn−1(r) dr∫ ∞

0 r2kφ2(r)fn−1(r) dr
, (6a)

fn(r) = 1 − 2
∫ r

rc

dy

y2kφ2(y)

∫ y

rc

x2kφ2(x)
(
�f

n − h(x)
)
fn−1(x) dx, (6b)

where rc could be chosen as rc = 0 or rc = ∞ and the normalization is chosen as fn(rc) = 1.
As for the τ -iteration we have [6]

�τ
n =

∫ ∞
0 r2kφ2(r)(h(r) − 1

2 (τ ′
n−1(r))

2) dr∫ ∞
0 r2kφ2(r) dr

, (6c)

τ ′
n(r) = 2r−2kφ−2(r)

∫ r

0
y2kφ2(y)

[(
�τ

n − h(y)
)

+
1

2
(τ ′

n−1(y))2
]

dy (6d)

where τ ′(r) = dτ
dr

. The detailed derivation is given in the appendix. To ensure the convergency
of the iterative methods it is necessary to construct the trial function in such a way that the
perturbed potential h(r) is always positive (or negative) and finite everywhere. Specially,
h(r) → 0 when r → ∞. In the following we construct two different trial functions for the
iteration procedures.
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2. Trial functions

2.1. Trial function I

Introduce

φ(r) = e−S0(r). (7)

Now substituting (7) into (4) we obtain the equation for S0(r):

S ′
0(r)

2 − 2k

r
S ′

0(r) − S ′′
0 (r) = 2(V (r) − h(r) − gE0). (8)

Therefore

h(r) + gE0 = V (r) − 1

2
(S ′

0(r)
2 − 2k

r
S ′

0(r) − S ′′
0 (r)). (9)

For a finite h(r) it should not include terms with positive power of r. Since the highest order
of r-power in the potential is 6 and V (r) has only even powers of r, we first assume

S0(r) = (ar4 + cr2 + e) + m log(αr2 + 1). (10)

Substituting (10) into (8), to cancel the r6 term we have a = g/4. Coefficients e and α only
change the normalization and we simply set e = 0, α = 1 and finally obtain

S0(r) =
(

g

4
r4 + cr2

)
+ m log(r2 + 1). (11)

To cancel the terms with r4 and r2 we set

c = 1
4g(A − 2)r2

0 and m = 1
4 (g + 3)r4

0 − 1
16g(A + 2)2r4

0 (12)

and obtain

h(r) = 2m(m + 1)
1

(r2 + 1)2
+ (mg(A − 2)r2

0 − 2mg + 2mk − 2m2 − m)
1

r2 + 1
(13)

gE0 = 1

2
Ag2r6

0 + 2mg + (2k + 1 − 4m)
1

4
g(A − 2)r2

0 . (14)

When g = 1 and A = 2 we have m = 0, h(r) = 0 and the trial function is just the exact
solution of the Schrödinger equation. To look in more detail the behavior of the trial function
we choose g = 1 and see the change of the trial function with the parameter A. When A = 2
our trial function is just the exact solution with the maximum of the wavefunction at r = 0.
For A �= 2 we always have h(r) < 0 and finite, and h(r) → 0 when r → ∞. This ensures the
convergency of the iterative procedure. When A < 2 the potential is more centered at r = 0
and the trial function keeps its maximum at r = 0. When A > 2 the potential is more like a
double-well and the trial function has maxima at r �= 0.

2.2. Trial function II

We can introduce another trial function

φ(r) =
( r0 + a

r + a

)k

e−gS0(r)−S1(r), k = (N − 1)/2 (15)

satisfying the Schrödinger equation (4) and the boundary condition

φ(∞) = 0.
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The parameter a in (15) is fixed to ensure the boundary condition

φ′(0) = 0,

namely

gS ′
0(0) + S ′

1(0) +
k

a
= 0. (16)

Substituting (15) into (4), we compare terms with same power of g. From g2-terms we obtain

S ′
0(r) =

√
2v = (

r2 − r2
0

)√
r2 + Ar2

0 . (17)

To ensure the h(r) satisfying the convergence condition, S1(r) is defined in a special way to
prevent terms with positive powers of r from presenting in h(r). For g1 terms we have

− 1
2

(
2S ′

0S ′
1 − S ′′

0 − 2ka

√
r2 + Ar2

0

)∣∣
r=r0

− ka2 = E0. (18)

Introducing

E0 = E
(1)
0 + E

(2)
0 + E

(3)
0 (19)

and defining

E
(3)
0 = −ka2 (20)

we write

S ′
0S ′

1 = (
1
2S

′′
0 − E

(1)
0

)
+

(
ka

√
r2 + Ar2

0 − E
(2)
0

)
.

Since S ′
0(r0) = 0 we obtain

E
(1)
0 = 1

2S
′′
0 (r0) = r2

0

√
1 + A, (21)

E
(2)
0 = kar0

√
1 + A (22)

and

S ′
1 = (

1
2S

′′
0 − E

(1)
0

)/
S ′

0 +
(
ka

√
r2 + Ar2

0 − E
(2)
0

)/
S ′

0. (23)

Substituting S ′
0(r) into (23) we have explicitly

S ′
1(r) = r2 + (1 + A)r2

0√
r2 + Ar2

0

(
r

√
r2 + Ar2

0 + r2
0

√
1 + A

) +
r

2
(
r2 + Ar2

0

)
+

ka√
r2 + Ar2

0

(√
r2 + Ar2

0 + r0

√
1 + A

) . (24)

The expression for h(r) is

h(r) = 1

2

(
S ′2

1 − S ′′
1

)
+

1

2

k(k + 1)

(r + a)2
− ka

r(r + a)
S ′

1 − k2

r(r + a)

+ kag
(
r2

0 − a2
)√

r2 + Ar2
0

r(r + a)
+ ka2g

Ar2
0

r
(√

r2 + Ar2
0 + r

) . (25)

Substituting S ′
0(0) and S ′

1(0) into (16) we obtain an equation for the parameter a

ka2 +
(
r0

√
1 + A − gr5

0 A
)
(
√

A +
√

1 + A)a + kr2
0 (A +

√
A(1 + A)) = 0. (26)
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For the above equation to have real solutions of a the following restriction is put on the
parameters g and A:(√

1 + A − gAr4
0

)2
r2

0 (
√

A +
√

1 + A) − 4
√

Ak2r2
0 � 0. (27)

For example, for N = 3, i.e. k = 1, (27) requires g > 0.922 when A = 2 and A > 1.81 when
g = 1. When (27) cannot be fulfilled the condition φ′(0) = 0 can be satisfied by introducing
the trial function as

φrev(r) = φ(r) + ξφ−(r) for r < r0 (28a)

and

φrev(r) = (1 + ξφ−(r0)/φ(r0))φ(r) for r > r0 (28b)

where φ−(r) is defined as

φ−(r) =
( r0 + a

r + a

)k

e−gS0(−r)−S1(r). (29)

The parameter ξ is fixed to satisfy the condition φ′
rev(0) = 0, namely

φ′(0) + ξφ′
−(0) = 0. (30)

Correspondingly the Schrödinger equation satisfied by φrev(r) is(
− 1

2r2k

d

dr
r2k d

dr
+ V (r) − hrev(r)

)
φrev(r) = gE0φrev(r), (31)

where hrev(r) = h(r) for r > r0 and

hrev(r) = h(r) + 2gξ

(
E0 + ka

a2 − r2
0

r(r + a)

√
r2 + Ar2

0 − ka2 Ar2
0

r
(√

r2 + Ar2
0 + r

)
)

φ−(r)/φrev(r)

(32)

for r < r0. It is interesting to note that the conditions (26) and (30) for φ′(0) = 0 also ensure
h(r) and hrev(r) to be finite when r → 0, which is necessary for the convergency of the
iteration procedure.

By integrating (17) and (25) we obtain S0(r) and S1(r) as

S0(r) = 1

8
r

√
r2 + Ar2

0

(
2r2 + Ar2

0 − 4r2
0

) − 1

8

(
A2r4

0 + 4Ar4
0

)
ln

(
r +

√
r2 + Ar2

0

)
(33)

S1(r) = ln(r + r0) +
1

4
ln

(
r2 + Ar2

0

)
+

(
1

2
+

ka

2r0

)
ln

√
1 + A

√
r2 + Ar2

0 + r + Ar0

√
1 + A

√
r2 + Ar2

0 − r + Ar0

. (34)

Substituting them into (15) or (28)–(29) gives the final expression of the trial functions. From
(25) we can also reach

1

2
(S ′2

1 − S ′′
1 ) = γ

8
(
r2 + Ar2

0

)2
(α + β)

+
ka

2r(r + a)
(
r2 + Ar2

0

) γ ′

α′ + β ′

+
k2a2

2
(
r2 + Ar2

0

)(√
r2 + Ar2

0 + r0

√
1 + A

)2

+
kar

(
2
√

r2 + Ar2
0 + r0

√
1 + A

)
(
r2 + Ar2

0

)3/2(√
r2 + Ar2

0 + r0

√
1 + A

)2
(35)
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with

γ = 225r8 + 270(1 + 2A)r6r2
0 + 3(188A2 + 216A − 5)r4r4

0

+ 36A(8A2 + 10A − 1)r2r6
0 + 4A2(4A + 1)2r8

0 ,

γ ′ = 9r4 + 3(4A + 1)r2r2
0 + 4A(1 + A)r4

0 ,

α = 15r6 + (18A − 6)r4r2
0 + (8A2 + 12A + 7)r2r4

0 + (8A2 + 2A)r6
0 ,

β = 8
√

1 + Ar2
0 r

(
3r2 + (2A − 1)r2

0

)√
r2 + Ar2

0

and

α′ = r
(
3r2 + (2A − 1)r2

0

)
, β ′ = 2r2

0

√
1 + A

√
r2 + Ar2

0 .

Substituting (35) into (25) and (32) gives the final expressions of h and hrev. With the above
results for h, φ and hrev, φrev we are ready to perform the iteration procedure.

3. Numerical result

Starting from the above-defined two sets of trial functions φ(r) and the related h(r), we can
perform the iterations based on the f -iteration of (6a) and (6b) or τ -iteration of (6c) and (6d).
Our numerical results show that although the two iteration procedures look quite different
and the two trial functions are defined in different ways the finally obtained wavefunctions
and eigenvalues for the groundstate converge nicely on the same final shapes and values.
Now we give some more detailed discussions about our results. Let us take N = 3 as an
example.

For g = 1 and A = 2
For the trial function I, when g = 1 and A = 2, as mentioned before, the trial function

gives just the exact solution of the groundstate

φ(x) = e−r4/4

with E0 = r6
0 . However, for the trial function II, it is necessary to fix the parameter a in the

trial function (15) first by solving (26). It gives

a = 4.4267 or a = 1.2976

Performing the iteration based either on the f -iteration or on the τ -iteration the final convergent
result of the wavefunction and the eigenvalue of the groundstate are consistent with the exact
solution. The trial function and the final exact wavefunction for the groundstate are plotted
in figure 1. It is interesting to observe the transition of the shape of the wavefunction for the
trial function with maxima at a finite r to the final convergent one with only one maximum
at r = 0 after the iteration procedure, as the exact groundstate wavefunction should be. This
answered the question raised by Jackiw [2] in the N-dimensional case: Even the trial function
proposed has its maxima at r > 0 the iteration procedure would still reach the exact solution
of the groundstate wavefunction with its only maximum at r = 0.

3.1. Comparison of the two iteration procedures

In tables 1 and 2, the eigenvalues of the groundstate obtained from the τ - and f -iterations are
listed, respectively, based on the two different trial functions for different parameters g and A.
Comparing the two iteration procedures, it can be seen that the τ -iteration is convergent faster

6
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Figure 1. Trial function φ(r) and groundstate wavefunction ψ(r) for N = 3, g = 1 and A = 2.

Table 1. Eigenvalues of groundstates for N = 3 based on τ -iteration.

g A Trial function E0 E1 E2 E3 E4 E5

0.5 2 I 1.1629 1.3978 1.3763 1.3772 1.3773
0.5 2 II −0.4300 1.3963 1.3763 1.3773 1.3773
0.93 2 I 2.0237 2.0352 2.0351 2.0351 2.0351
0.93 2 II 2.0921 2.0457 2.0355 2.0351 2.0351
1 2 I 2.1517
1 2 II −8.6479 2.1523 2.1517 2.1517 2.1517
2 2 I 3.6066 4.1140 4.1093 4.1094 4.1094
2 2 II 5.5581 4.1362 4.1123 4.1097 4.1094
1 1 I 2.5073 1.8400 1.8392 1.8392 1.8392
1 1 II −2.3537 1.8920 1.8330 1.8394 1.8393 1.8392
1 1.9 I 2.1225 2.1215 2.1215 2.1215 2.1215
1 1.9 II −3.8095 2.1232 2.1215 2.1215 2.1215
1 3 I 3.5310 2.4630 2.4426 2.4418 2.4418
1 3 II 3.6773 2.4675 2.4437 2.4419 2.4418

Table 2. Eigenvalues of groundstates for N = 3 based on the f -iteration.

g A Trial function E0 E1 E2 E3 E4 E5

0.5 2 I 1.1629 1.3978 1.3705 1.3786 1.3770 1.3773
0.5 2 II −0.4300 1.3963 1.3795 1.3775 1.3773 1.3773
0.93 2 I 2.0237 2.0352 2.0351 2.0351 2.0351
0.93 2 II 2.0921 2.0457 2.0337 2.0352 2.0351 2.0351
1 2 I 2.1517
1 2 II −8.6479 2.1523 2.1516 2.1517 2.1517 2.1517
2 2 I 3.6066 4.1140 4.1088 4.1094 4.1094
2 2 II 5.5581 4.1362 4.0976 4.1108 4.1092 4.1094
1 1 I 2.5073 1.8400 1.8392 1.8392 1.8392
1 1 II −2.3537 1.8920 1.8473 1.8402 1.8393 1.8392
1 1.9 I 2.1225 2.1215 2.1215 2.1215 2.1215
1 1.9 II −3.8095 2.1232 2.1214 2.1215 2.1215 2.1215
1 3 I 3.5310 2.4630 2.4464 2.4425 2.4419 2.4418
1 3 II 3.6773 2.4675 2.4353 2.4425 2.4417 2.4418

7
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Figure 2. groundstate wavefunction ψ(r) for N = 3, g = 1 and A = 1 (thin), 2 (middle) and 3
(thick).

than the f -iteration. The numerical calculation also takes less time to reach the convergent
result for the τ -iteration. This can be understood by comparing the formulae (6a) and (6b)
for the f -iteration with (6c) and (6d) for τ -iteration. First, in the formula for the energy
correction, the denominator changes in each order in the f -iteration while it needs only to
calculate once for the whole τ -iteration procedure. Besides, one fold less of integration is
needed for each order of iteration in the τ -iteration procedure since it is related only to τ ′

n.
These two advantages speed up the numerical calculation of the τ -iteration very much. It is
shown in the appendix that the two iteration procedures are derived from the same Schrödinger
equation; however they choose different unknown functions, namely f or τ , to perform the
iteration, therefore, are independent of each other. Although they approach the convergent
results in different ways with different convergent speeds, it is clearly shown in two tables that
the two iteration procedures do give the same convergent results.

In the following we compare the two trial functions and analyze the change of the
wavefunction shapes with parameters of the potential. Since the two iteration procedures give
the same convergent results the following discussions are suitable for both procedures.

3.2. Comparison of the two trial functions

For the two trial functions, the trial function I is closer to the groundstate and needs less orders
of iteration to reach the exact result in most cases. This can clearly be seen for the case of
g = 1 and A = 2. The trial function I has already given the exact solution while for the
trial function II which has maxima at r > 0 the exact groundstate wavefunction with its only
maximum at r = 0 can be reached only after the iteration. In fact, for different parameters
g and A the trial functions I always have shapes similar to the exact solution, while the trial
functions II differ from the exact ones in their shapes for g � 1 and A � 2. Although the
iteration process for the two trial functions is quite different, the two iteration procedures with
two sets of trial functions always reach the same final results of eigenvalues and groundstate
wavefunctions.

3.3. Change of the wavefunction shapes with parameters

As examples the obtained groundstate wavefunctions after the iteration procedure are plotted
in figures 2 and 3 for A = 2 and g = 0.5, 1 or 2, and for g = 1 and A = 1, 2 or 3, respectively.

8
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Figure 3. Groundstate wavefunction ψ(r) for N = 3, A = 2 and g = 0.5 (thin), 1 (middle) and 2
(thick).

It is interesting to see the transition of the form of the obtained groundstate wavefunction from
the shape with maximum at r = 0 to that with maxima at a finite r, becoming a degenerate
groundstate, when g increases from <1, passing 1 to >1 for A = 2, or when A increases
from <2, passing 2 to >2 for g = 1. Therefore, the groundstate wavefunctions in the region
g � 1 and A � 2 have the shape with only one maximum at r = 0, while in the region outside
the wavefunctions have maxima at a finite r and the groundstates become degenerate. Their
maxima move to larger r when the parameters g and A increase further.

Our results show that the generalized Sombrero-shaped potential not only gives the
degenerate groundstate for the properly chosen parameters A > 2 and g > 1, but also gives
the transition of the shape of the wavefunctions from the degenerate groundstate to those with
only one maximum at r = 0 by changing the parameters of the potential to A � 2 and g � 1.
This provides the possibility of studying the relation between the restoration of spontaneous
symmetry breaking and the change of the parameters of the potential. It is worthy to look at the
problem in more detail and try to relate the parameters of the potential to possible dynamical
mechanisms.
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Appendix

For a particle with unit mass, moving in an N-dimensional potential V (r), the groundstate
wavefunction 	(r) satisfies the following Schroedinger equation:(− 1

2∇2 + V (r)
)
	(r) = E	(r). (A.1)

Introduce a potential correction h(r) and define another wavefunction 
(r) satisfying the
Schroedinger equation(− 1

2∇2 + V (r) − h(r)
)

(r) = (E − �)
(r), (A.2)

where � is the corresponding energy correction. Multiplying (A.2) on the left by 	(r) and
(A.1) by 
(r), their difference gives

− 1
2∇(
∇	 − 	∇
) = −(h − �)
	. (A.3)

9
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Let

	(r) = 
(r)f (r) = 
(r) e−τ(r). (A.4)

In [1], an equation is introduced for (f (r),�). Here according to the same procedure similar
results are deduced for (τ (r),�). For the convenience of comparison we list both results
together in the following. Substituting (A.4) into (A.3) equations for (f,�) and (τ,�) could
be obtained as follow:

− 1
2∇(
2∇f ) = (−h + �)
2f (A.5)

and
1
2∇(
2∇τ) = (−h + � + 1

2 (∇τ)2
)

2. (A.6)

The integration over all space for the left-hand side of the above equations is zero. This leads
to the expressions of the energy correction related to f and τ , respectively:

� =
∫

dr 
2hf∫
dr 
2f

, (A.7)

and

� =
∫

dr 
2
[
h − 1

2 (∇τ)2
]∫

dr 
2
. (A.8)

Introducing

�i
1,�

i
2, . . . ,�

i
n, . . . , i = f or τ (A.9)

and

f1, f2, . . . , fn, . . . or τ1, τ2, . . . , τn, . . . (A.10)

the two iterative series are defined as

1

2
∇(
2∇τn) =

(
−h + �τ

n +
1

2
(∇τn−1)

2

)

2, (A.11)

�τ
n =

∫
dr 
2

[
h − 1

2 (∇τn−1)
2
]∫

dr 
2
(A.12)

and

−1

2
∇(
2∇fn) = (−h + �f

n

)

2fn−1, (A.13)

�f
n =

∫
dr 
2hfn−1∫
dr 
2fn−1

. (A.14)

For later convenience the iteration series for
{
τn,�

τ
n

}
defined in equations (A.11) and (A.12),

originally introduced in [6], is named the τ -iteration, while that for
{
fn,�

f
n

}
given in (A.13)

and (A.14), originally introduced in [1], is named f -iteration in this paper. By introducing
the external electrostatic charge distributions

σ τ
n = (−h + �τ

n + 1
2 (∇τn−1)

2
)

2 (A.15)

and

σf
n = (−h + �f

n

)

2fn−1, (A.16)

10
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correspondingly also defining the displacement electric fields

Dτ
n = 1

2
2∇τn (A.17)

and

Df
n = − 1

2
2∇fn, (A.18)

where one can define κ = 
2 corresponding to the dielectric constant in the usual electrostatic
problem. Now equations (A.11) and (A.13) can be expressed by the Maxwell equations of the
electrostatic analog problem for τ - and f -iteration [1, 6]:

∇ · Di
n = σ i

n, for i = τ, f. (A.19)

If this electrostatic analog problem (A.19) can be solved numerically, starting from the initial
conditions

�τ
0 = 0, τ0 = 0

or

�
f

0 = 0, f0 = 1,

the corrections of the groundstate energy and wavefunction can be solved by the iteration
procedures (A.19) and (A.12) or (A.14). However, the dielectric constant κ = 
2 in this
problem is not a constant, but changes with r. This makes it quite complicated to solve (A.19).
Works along this direction are still in progress.

For the radially symmetric potential V (r) and potential correction h(r) the problem for
solving the groundstate can be simplified and is related only to the radial variable r. By
separating the angular variables [1] (A.1) and (A.2) can be reduced to equations (2) and (4)
for the groundstate radial wavefunctions ψ(r) and φ(r). Multiplying (4) on the left by ψ(r)

and (2) by φ(r), their difference gives

− 1

2r2k

d

dr

(
ψr2k d

dr
φ − φr2k d

dr
ψ

)
= (h − �)φψ. (A.20)

Let

ψ(r) = φ(r)f (r) = φ(r) e−τ(r). (A.21)

The equations for (f (r),�) and (τ (r),�) are deduced as follows:

d

dr

[
r2kφ2 df

dr

]
= 2r2k(h − �)φ2f (A.22)

and

− d

dr

[
r2kφ2 dτ

dr

]
= 2r2k

[
h − � − 1

2

(
dτ

dr

)2 ]
φ2. (A.23)

The integration of the left-hand side of equations (A.22) and (A.23) over r = 0 to ∞ is zero,
which gives the expressions of the energy correction

� =
∫ ∞

0 r2kφ2(r)h(r)f (r) dr∫ ∞
0 r2kφ2(r)f (r) dr

(A.24)

and

� =
∫ ∞

0 r2kφ2(r)
(
h(r) − 1

2 (τ ′(r))2
)

dr∫ ∞
0 r2kφ2(r) dr

, (A.25)

with τ ′ = dτ
dr

. Introducing the two iterative series {fn(r)},
{
�

f
n

}
and {τn(r)},

{
�τ

n

}
with n = 0,

1, . . . it is easy to obtain the iteration equations (6a)–(6d) from (A.22)–(A.25).
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